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Abstract. The ring configurations for classical two-dimensional (2D) atoms are calculated
within the Thomson model and compared with the results from ‘exact’ numerical simulations.
The influence of the functional form of the confinement potential and the repulsive interaction
potential between the particles on the configurations is investigated. We also give exact results
for those eigenmodes of the system whose frequency does not depend on the number of particles
in the system.

1. Introduction

Recently, a detailed investigation of the ground-state configurations of a finite two-
dimensional (2D) classical system of charged particles, confined by a parabolic external
potential, was made in reference [1]. It was found that the particles arranged themselves
on rings. A study of the spectral properties of this classical system such as the energy
spectrum, the eigenmodes, and the density of states was made in reference [2]. In both
papers, Monte Carlo simulations were used to study theseclassical atoms.

In the present paper we aim to obtain analytical results for these classical 2D atoms
by using a model system: the Thomson model. Thomson proposed this classical model in
1904 in order to calculate the structure of the atom [3]. He was unable to obtain analytical
results for the case of a real 3D atom and therefore constrained the particles to move in
a plane. Together with the parabolic confinement potential, this is now a model for the
classical 2D atoms which were studied in references [1] and [2]. A crucialansatzin the
Thomson model is that the particles arrange themselves in a ring structure. Next, Thomson
puts as many particles as possible on a single ring—as many as are allowed by stability
arguments—and the rest of them are placed in the centre. By successively applying this
approach he was able to construct the approximate atomic ring configurations.

Here we apply the Thomson model and compare the configurations obtained with those
from the ‘exact’ numerical simulations of reference [1], and determine when the Thomson
model breaks down. In a second step we generalize the Thomson model to: (1) generalrn

confinement potentials, and (2) different functional forms (1/rn
′

and logarithmic) for the
repulsive inter-particle potential.

This paper is organized as follows. The calculation made to obtain the structure and the
eigenfrequencies in the Thomson model is outlined in section 2. We compare the results
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for parabolic confinement and Coulomb repulsion with the previous results from ‘exact’
numerical simulations. Section 3 is devoted to the extensions of the Thomson model. In
section 4 we give some analytical results for the eigenfrequencies of artificial atoms. Our
conclusions and our results are summarized in section 5.

2. The Thomson model

2.1. The general system

We study a system of a finite number,N , of charged particles interacting through a repulsive
inter-particle potential and moving in two dimensions (2D). A confinement potential keeps
the system together. We focus our attention on systems described by the Hamiltonian

H =
N∑
i=1

1

2
mω2

0

(
ri

λ

)n
+ e

2

ε

N∑
j>i

1

|ri − rj |n′ (2.1)

wherem is the mass of the particle,ω0 the radial confinement frequency,e the particle
charge, ε the dielectric constant of the medium that the particles are moving in, and
ri = (xi, yi) the position of theith particle with ri ≡ |ri |. For convenience, we will
refer to our charged particles as electrons, keeping in mind that they can also be ions with
chargee and massm. We can write the Hamiltonian in a dimensionless form if we express
the coordinates, energy, and force in the following units:

r0 = (e2/ε)1/(n+n
′)α−1/(n+n′) (2.2a)

E0 = (e2/ε)n/(n+n
′)αn

′/(n+n′) (2.2b)

F0 = (e2/ε)(n−1)/(n+n′)α(n
′+1)/(n+n′) (2.2c)

whereα = 1
2mω

2
0/λ

n. All of the results will be given in reduced form, i.e., in dimensionless
units. In such units the Hamiltonian becomes

H =
N∑
i=1

rni +
N∑
j>i

1

|ri − rj |n′ . (2.3)

Thus, the energy is only a function of the number of particlesN , the power of the
confinement potentialn, and the power of the interaction potentialn′. For n = 2 and
n′ = 1 this system reduces to the one studied in references [1] and [2]. The numerical
values for the parametersr0 andE0 for some typical experimental systems like electrons
in quantum dots [4], electron bubbles on a liquid helium surface [5], and ions trapped in
Penning and Paul traps [6] were given in reference [1] for the case of parabolic confinement
and Coulomb repulsion.

In the Thomson model one obtains the ground-state configurations of this system by
making the following assumption: theN electrons are arranged at equal angular intervals
around the circumference of a circle of radiusa. Then one investigates the stability of this
configuration. In other words, small displacements of the electrons out of their equilibrium
have to remain small in time. Solving the equations of motion in polar coordinates to first
order in these displacements, we obtain an equation which determines the eigenfrequencies
ω of the system:(
(n+ n′) I (n′)

2n′+1an
′+2
SN + Lk − L0+ (n− 2)�2− ω2

)
(N0−Nk − ω2) = (Mk − 2�ω)2

(2.4)
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Figure 1. The eigenfrequencies squared forN = 2, 3, 4, 5, 6 for � = 0.

where� is the constant angular velocity with which the whole system rotates around its
centre,I (n′) = n′, and

SN =
N−1∑
j=1

1

sinn
′
(jπ/N)

(2.5a)

Lk = I (n′)
(2a)n′+2

N−1∑
j=1

cos(2kjπ/N)

sinn
′+2(jπ/N)

(n′ sin2(jπ/N)+ 1) (2.5b)

Nk = I (n′)
(2a)n′+2

N−1∑
j=1

cos(2kjπ/N)

sinn
′
(jπ/N)

((n′ + 1) cot2(jπ/N)+ 1) (2.5c)

Mk = n′ I (n
′)

(2a)n′+2

N−1∑
j=1

sin
2kjπ

N

cos(jπ/N)

sinn
′+1(jπ/N)

(2.5d)

wherek is an integer between 0 andN − 1. The derivation of equation (2.4) is straight-
forward and proceeds along the lines given by Thomson [3] for the case ofn = 2 and
n′ = 1. How many frequencies does this equation yield? From the outset we notice that
if we replacek by N − k in equation (2.4), the values ofω differ only in sign, and thus
this results in the same frequencies. Consequently, all the values ofω can be obtained by
taking onlyk = 0, 1, . . . , (N − 1)/2 if N is odd, ork = 0, 1, . . . , N/2 if N is even. Thus,
if N is odd there are(N + 1)/2 equations of the type (2.4). Fork = 0, Mk=0 = 0, and
equation (2.4) reduces to a quadratic equation, which implies that the number of roots of
these(N + 1)/2 equations equals 4× (N + 1)/2− 2 = 2N , i.e. the number of degrees of
freedom of the system, as it should. ForN even, there areN/2+1 equations. ButMk = 0
for k = 0 andk = N/2, and thus two of these reduce to quadratics. Consequently, the
number of roots is 4× (N/2+ 1) − 4 = 2N . Thus in both cases the number of roots is
equal to 2N , the number of degrees of freedom of the electrons in the plane of motion, and
therefore all eigenfrequencies are obtained from equation (2.4).
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2.2. Parabolic confinement and Coulomb repulsion

Let us consider the case of parabolic confinement (n = 2) and Coulomb repulsion between
the electrons (n′ = 1). Equation (2.4) for the eigenfrequencies becomes(

3

4a3
SN + Lk − L0− ω2

)
(N0−Nk − ω2) = (Mk − 2�ω)2. (2.6)

If we takeλ = 1 in equation (2.1) the frequency is expressed in the unitω′ = ω0/
√

2.

Figure 2. The number of electronsf (Nout ) needed in the centre of the system in order to
stabilize a ring ofNout electrons.

Figure 1 shows the eigenfrequencies squared forN = 1, 2, 3, 4, 5, and 6 for zero angular
velocity, i.e.� = 0. Notice that the lowest non-zero eigenfrequency decreases, and in fact
for N = 6 we find thatω2 < 0, indicating that the single-ring configuration is no longer
stable. However, it is possible to stabilize the system by placing electrons in the centre. If
we putp electrons in the centre of the ring, equation (2.4) is modified into(
(n+ n′) I (n′)

2n′+1an
′+2
SN + Lk − L0+ (n

′ + 2)I (n′)p
an
′+2

+ (n− 2)�2− ω2

)
(N0−Nk − ω2)

= (Mk − 2�ω)2. (2.7)

From this equation we obtain the minimum value forp which is needed in order to make
a ring ofNout electrons stable. For parabolic confinement and Coulomb repulsion between
the particles, we find the condition

p > f (k,Nout ) ≡ a3

3
(L0− Lk)− SNout

4
+ a

3

3

M2
k

N0−Nk (2.8)

which must be satisfied for everyk. We introducef (Nout ) = max06k<N f (k,Nout ), andp is
equal to the integer which is just larger thanf (Nout ). Figure 2 shows the functionf (Nout ).
For p larger than one, thep inner electrons in principle cannot be at the same point, i.e. in
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the centre. They will repel each other until they balance the confinement potential. The
Thomson model assumes, as is approximately the case, that thep electrons around the
centre exert the same force as results fromp charges placed at the centre. As an example,
we consider the case ofNout = 12. For an outer ring of 12 electrons, equation (2.8) requires
that 7 electrons are inside (this result can be read off from figure 2). But 7 electrons cannot
form a single ring, but will arrange themselves as a ring of 6 with one at the centre. Thus
the system of 19 electrons will consist of an outer ring of 12, an inner ring of 6 and one
electron at the centre.

Table 1. The Mendeleev table for classical 2D atoms. The results as obtained from the Thomson
model are compared with the ‘exact’ results from the Monte Carlo simulations of reference [1].

N Thomson Monte Carlo N Thomson Monte Carlo

1 1 1 26 3, 9, 14 3, 9, 14
2 2 2 27 4, 9, 14 4, 9, 14
3 3 3 28 4, 10, 14 4, 10, 14
4 4 4 29 5, 10, 14 5, 10, 14
5 5 5 30 5, 10, 15 5, 10, 15
6 1, 5 1, 5 31 5, 11, 15 5, 11, 15
7 1, 6 1, 6 32 1, 5, 11, 15 1, 5, 11, 15
8 1, 7 1, 7 33 1, 6, 11, 15 1, 6, 11, 15
9 2, 7 2, 7 34 1, 6, 12, 15 1, 6, 12, 15

10 2, 8 2, 8 35 1, 6, 12, 16 1, 6, 12, 16
11 2, 9 3, 8 36 1, 7, 12, 16 1, 6, 12, 17
12 3, 9 3, 9 37 2, 7, 12, 16 1, 7, 12, 17
13 4, 9 4, 9 38 2, 7, 13, 16 1, 7, 13, 17
14 4, 10 4, 10 39 2, 8, 13, 16 2, 7, 13, 17
15 5, 10 5, 10 40 2, 8, 13, 17 2, 8, 13, 17
16 5, 11 1, 5, 10 41 2, 9, 13, 17 2, 8, 14, 17
17 1, 5, 11 1, 6, 10 42 3, 9, 13, 17 3, 8, 14, 17
18 1, 6, 11 1, 6, 11 43 3, 9, 14, 17 3, 9, 14, 17
19 1, 6, 12 1, 6, 12 44 4, 9, 14, 17 3, 9, 14, 18
20 1, 7, 12 1, 7, 12 45 4, 9, 14, 18 3, 9, 15, 18
21 2, 7, 12 1, 7, 13 46 4, 10, 14, 18 4, 9, 15, 18
22 2, 7, 13 2, 8, 12 47 5, 10, 14, 18 4, 10, 15, 18
23 2, 8, 13 2, 8, 13 48 5, 10, 15, 18 4, 10, 15, 19
24 2, 9, 13 3, 8, 13 49 5, 11, 15, 18 4, 10, 15, 20
25 3, 9, 13 3, 9, 13 50 1, 5, 11, 15, 18 4, 10, 16, 20

Following the above procedure we can construct a Mendeleev table, and compare it with
the results of the ‘exact’ numerical simulations [1]. This is done by finding the distribution
of the electrons when they are arranged in what we may consider to be the simplest way,
i.e. when the number of rings is a minimum. The number of electrons in the outer ringN1

will then be determined by the equation

N −N1 = f (N1). (2.9)

The value ofN1 as obtained from this equation is not an integer, and consequently we have
to take the integral part of this value. To obtainN2, the number of electrons in the second
ring, we solve

N −N1−N2 = f (N2). (2.10)

We continue in this way until there remain less than 6 electrons. This procedure yields the
results given in table 1. This Mendeleev table for the Thomson model is compared with the
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‘exact’ table of reference [1]. The configurations for which the Thomson model gives the
wrong results are printed in italics. Notice that this model is capable of predicting most of
the configurations correctly. For systems with many electrons (N > 35) the Thomson model
starts to fail. However, even in this case the number of rings is still predicted correctly for
N < 50. The reason for this difference is that in the Thomson model the configurations are
found by using a stability argument, while in reference [1] they were found by minimization
of the energy using Monte Carlo simulations. Here we will not compare the energy as
obtained from the Thomson model with the result given in reference [1]. We found that the
energy in the Thomson model forN > 6 deviates strongly from the ‘exact’ results, which
is due to the assumption that all inner electrons are placed at the centre.

3. Extensions of the Thomson model

3.1. The effect of the confinement potential

It turned out that for parabolic confinement and Coulomb repulsion the maximum number of
particles on the inner ring is 5. Now we want to investigate how the confinement potential
influences the possible configurations. For simplicity, we taken′ = 1 for the inter-particle
repulsion, i.e. Coulomb repulsion.

Figure 3. The maximum number of electrons on the inner, second,. . . , sixth ring as functions
of the power of the confinement potential (n) for the case of Coulomb repulsion between the
electrons.

From equation (2.7) we obtain the minimal value forp which stabilizes a ring ofNout
electrons:

p >
a3

3
(L0− lk)− n+ 1

12
SN + a

3

3
(2− n)�2+ a

3

3

M2
k

N0−Nk (3.1)

and this inequality must hold for everyk. Notice that only forn = 2, i.e. parabolic
confinement, does this stability condition not depend on the angular velocity�. For a
linear confinement potential (n = 1) each configuration will become unstable for sufficiently
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Table 2. The Mendeleev table for the Thomson model for various confinement potentialsrn.

N n = 1 n = 2 n = 3 n = 10 N n = 1 n = 2 n = 3 n = 10

3 3 3 3 3 14 1, 4, 9 4, 10 4, 10 14
4 1, 3 4 4 4 15 1, 4, 10 5, 10 4, 11 15
5 1, 4 5 5 5 16 1, 5, 10 5, 11 5, 11 16
6 1, 5 1, 5 6 6 17 1, 5, 11 1, 5, 11 5, 12 17
7 1, 6 1, 6 7 7 18 1, 6, 11 1, 6, 11 6, 12 1, 17
8 2, 6 1, 7 1, 7 8 19 2, 6, 11 1, 6, 12 7, 12 2, 17
9 2, 7 2, 7 1, 8 9 20 2, 7, 11 1, 7, 12 7, 13 3, 17

10 2, 8 2, 8 1, 9 10 21 2, 7, 12 2, 7, 12 1, 7, 13 4, 17
11 3, 8 2, 9 2, 9 11 22 2, 8, 12 2, 7, 13 1, 8, 13 4, 18
12 3, 9 3, 9 2, 10 12 23 3, 8, 12 2, 8, 13 1, 9, 13 5, 18
13 1, 3, 9 4, 9 3, 10 13 24 3, 8, 13 2, 9, 13 1, 9, 14 6, 18

large�, while for n > 2 every configuration can be stabilized if the system rotates quickly
enough. To get an idea of the influence of the confinement potential on the configurations,
we limit ourselves to the case where� = 0. Following the same procedure as used in the
previous section we find the Mendeleev table (table 2). The results presented in table 2
are a good first approximation to the ‘exact’ results for theN -values considered. Figure 3
shows the maximum number of electrons on the inner, second,. . . , sixth ring as functions
of n. Notice that for a linear confinement potential the inner ring can support a maximum
of 3 electrons, which is a much smaller number than in the case of parabolic confinement.
For confinement potentials withn > 2 it is just the opposite: more electrons can be fitted
on the rings without destabilizing them.

In the limit n→∞ the confinement potential becomes a hard-wall potential, i.e.V (r) =
0 (r < λ),∞ (r > λ). We found numerically that the maximum number of particles on each
of the rings keeps increasing withn. This clearly signals the breakdown of the Thomson
model in this limit, because from ‘exact’ numerical simulations (see reference [1]) with
a hard-wall circular potential it is known that, with increasing number of electrons, inner
rings are formed. We can understand this as follows. In the Thomson model the ground-
state configurations are found using a stability argument, so only inner rings are formed to
stabilize the outer electrons. For a hard-wall potential, there is no confining force forr < λ,
and thus no inner electrons are needed. All of the electrons form one ring atr = λ, but
this is not the configuration with the minimum value of the energy.

For completeness, we mention that recently Farias and Peeters [7] studied a system
of four electrons in a Coulomb type of confinement, and found different configurations
depending on the strength of the Coulomb confinement potential. This, together with the
present results, indicates that the numbers of electrons on each ring are not universal, but
can be strongly influenced by the type and strength of the confinement potential.

3.2. The effect of the inter-particle interaction potential

Now we investigate the effect of the functional form of the interaction potential of the
electrons on the ground-state configurations. For simplicity, we consider here a parabolic
confinement potential (n = 2).

First we can extend the inter-particle potential to a logarithmic interaction. To obtain
equations (2.4) and (2.7) we used 1/rn

′
as the inter-particle potential. These equations

are obtained from the law of Newton which contains the force. Because the derivative
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of ln r equals 1/r, these equations are therefore also valid for a logarithmic inter-particle
interaction where we have to taken′ = 0 andI (0) = 1.

Figure 4. The maximum number of electrons on the inner, second,. . . , sixth ring as functions of
the power of the inter-particle interaction (n′) for the case of a parabolic confinement potential.
n′ = 0 corresponds to a logarithmic interaction.

In table 3, we give the Mendeleev table as obtained from the generalized Thomson
model using a logarithmic and a 1/r2 interaction, and compare the results with the one
for a Coulomb interaction (table 3). For the 1/r2 interaction we find that with increasing
number of electrons more electrons have to be placed at the centre than for the case of
Coulomb interaction in order to stabilize the outer ring. Therefore the resemblance with
the ‘exact’ Mendeleev table will not be as good as for the case of Coulomb interaction.
Indeed, the effect of the assumption that all inner electrons are placed at the centre will be
larger. For the logarithmic interaction the opposite is found. Fewer electrons have to be
placed at the centre and in this case the Thomson model should work very well. Figure 4
shows the maximum number of electrons on the inner, second,. . . , sixth ring as function
of n′. Notice that the maximum occupation number of the different rings decreases with
increasingn′.

For n′ → ∞ we found numericallyN1 = 4, and for all of the outer ringsN = 6. Also
in this limit we do not expect that the Thomson model gives the correct results, because
the inter-particle interaction becomes extremely short range, i.e. they are delta-function-like.
Classically the electrons can sit very close to each other, and thus will occupy ther ≈ 0
region where the confinement potential is zero. As a consequence, such a system is similar
to the case of an infinite 2D Wigner lattice, where the particles form a hexagonal lattice,
i.e. each electron has six neighbours, and no ring structure is expected. Similar results
were recently obtained [8] for a screened Coulomb interaction e−κr/r using a molecular
dynamics simulation approach. With increased screening, i.e. largerκ, structural transitions
were found in which the ring configurations changed abruptly, and in the limit of very large
κ a 2D Wigner-type lattice was formed in the centre of the classical 2D atom.
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Table 3. The ground-state configurations for logarithmic, Coulomb, and 1/r2 interaction
between the particles, as obtained within the Thomson model, as functions of the total number
of particlesN .

N − ln r 1/r 1/r2 N − ln r 1/r 1/r2

2 2 2 2 27 2, 9, 16 4, 9, 14 5, 10, 12
3 3 3 3 28 2, 9, 17 4, 10, 14 5, 10, 13
4 4 4 4 29 2, 10, 17 5, 10, 14 1, 5, 10, 13
5 5 5 5 30 2, 10, 18 5, 10, 15 1, 6, 10, 13
6 6 1, 5 1, 5 31 3, 10, 18 5, 11, 15 1, 6, 11, 13
7 1, 6 1, 6 1, 6 32 3, 11, 18 1, 5, 11, 15 1, 7, 11, 13
8 1, 7 1, 7 1, 7 33 3, 11, 19 1, 6, 11, 15 2, 7, 11, 13
9 1, 8 2, 7 2, 7 34 4, 11, 19 1, 6, 12, 15 2, 8, 11, 13

10 2, 8 2, 8 2, 8 35 4, 12, 19 1, 6, 12, 16 2, 8, 11, 14
11 2, 9 2, 9 3, 8 36 4, 12, 20 1, 7, 12, 16 3, 8, 11, 14
12 2, 10 3, 9 3, 9 37 5, 12, 20 2, 7, 12, 16 3, 8, 12, 14
13 3, 10 4, 9 4, 9 38 5, 13, 20 2, 7, 13, 16 3, 9, 12, 14
14 3, 11 4, 10 5, 9 39 5, 13, 21 2, 8, 13, 16 4, 9, 12, 14
15 4, 11 5, 10 5, 10 40 6, 13, 21 2, 8, 13, 17 5, 9, 12, 14
16 4, 12 5, 11 1, 5, 10 41 6, 14, 21 2, 9, 13, 17 5, 10, 12, 14
17 5, 12 1, 5, 11 1, 6, 10 42 6, 14, 22 3, 9, 13, 17 5, 10, 13, 14
18 5, 13 1, 6, 11 1, 6, 11 43 1, 6, 14, 22 3, 9, 14, 17 1, 5, 10, 13, 14
19 6, 13 1, 6, 12 1, 7, 11 44 1, 7, 14, 22 4, 9, 14, 17 1, 5, 10, 13, 15
20 6, 14 1, 7, 12 2, 7, 11 45 1, 7, 15, 22 4, 9, 14, 18 1, 6, 10, 13, 15
21 1, 6, 14 2, 7, 12 2, 8, 11 46 1, 7, 15, 23 4, 10, 14, 18 1, 6, 11, 13, 15
22 1, 7, 14 2, 7, 13 3, 8, 11 47 1, 8, 15, 23 5, 10, 14, 18 1, 7, 11, 13, 15
23 1, 7, 15 2, 8, 13 3, 8, 12 48 1, 8, 16, 23 5, 10, 15, 18 2, 7, 11, 13, 15
24 1, 8, 15 2, 9, 13 3, 9, 12 49 1, 8, 16, 24 5, 11, 15, 18 2, 8, 11, 13, 15
25 1, 8, 16 3, 9, 13 4, 9, 12 50 2, 8, 16, 24 1, 5, 11, 15, 18 2, 8, 11, 14, 15
26 2, 8, 16 3, 9, 14 5, 9, 12 51 2, 9, 16, 24 1, 6, 11, 15, 18 3, 8, 11, 14, 15

4. Eigenfrequencies independent of the number of electrons

Figure 1 suggests that in the case of parabolic confinement and Coulomb repulsion
there are three eigenfrequencies which are independent of the number of electrons (see
also reference [2]). The existence and value of these eigenfrequencies can be obtained
analytically.

(1) For any axial symmetric system the system as a whole can rotate, which leads to
an eigenfrequencyω = 0.

(2) The Hamilton equation of motion yields

v̇xi = −nxi(x2
i + y2

i )
n/2−1+ n′

∑
jj 6=i

(xi − xj )/rn′+2
ij .

Now consider the centre of massR =∑i ri which satisfies the differential equation

d2Rx

dt2
=
∑
i

v̇xi = −n
∑
i

xi(x
2
i + y2

i )
n/2−1 (4.1)

and of course the same forRy . Notice that equation (4.1) is independent ofn′. Thus only
for a parabolic confinement potential does the above equation reduce to d2Rx/dt2 = −2Rx
and is a twofold-degenerate vibration of the centre of mass with eigenfrequencyω = √2
obtained. This frequency is independent of the number of electrons and independent of the
inter-particle potential, which is a consequence of the generalized Kohn theorem [9].
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(3) For the mean square radiusR2 =∑i (x
2
i + y2

i ) we find

d2R2

dt2
= −2(n+ n′)

∑
i

(x2
i + y2

i )
n/2+ 2n′H + 2T (4.2)

with T =∑i (ẋ
2
i + ẏ2

i ) the total kinetic energy. For parabolic confinement, i.e.n = 2, there
is a breathing mode with frequencyω = √2(2+ n′) which is independent of the number
of electrons. The existence of the breathing mode does not depend on the functional form
of the inter-particle potential, but its value does.

5. Conclusions and summary

The Thomson model, a model for classical 2D atoms, was investigated, and the ground-state
configurations were obtained. The results are valid for repelling particles with arbitrary
mass and charge. First, we deduced within the Thomson model a Mendeleev table for
parabolic confinement and Coulomb repulsion between the electrons, and compared it with
the results from ‘exact’ Monte Carlo simulations [1]. The Thomson model correctly predicts
the configurations forN < 36. This table was constructed using stability arguments: the
eigenfrequencies of the 2D atom are calculated and determined when one of them becomes
imaginary in order to find the maximum number of electrons on the rings.

Knowing that the Thomson model is a rather good model for predicting the con-
figurations of classical 2D atoms, we investigated the effect of anrn confinement potential.
Only for parabolic confinement do the configurations not depend on the angular velocity for
rotation of the total system. For a linear confinement potential the configuration becomes
unstable if the system rotates too fast, while forn > 2 every configuration may be stable
if the system rotates quickly enough. We also found that the maximum number of allowed
electrons on each ring is an increasing function ofn, i.e. it increases with the steepness of
the confinement potential.

We extended the Thomson model to one of 1/rn
′

type and to a logarithmic interaction
between the electrons, and found the ground-state configurations. Here we found that with
increasingn′, i.e. for a shorter range of inter-particle interaction, fewer electrons can be put
on a ring.

We showed that there are three eigenfrequencies which are independent of the number of
electrons in the case of parabolic confinement. The zero-frequency mode is a consequence
of the axial symmetry of the system. We found that only for a parabolic confinement
potential are the frequencies of the vibration of the centre of mass and the breathing mode
independent of the number of electrons. The value of the latter does depend on the functional
form of the inter-particle potential.
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